Abstract

The high bandwidth demand of Internet applications has recently driven the need of increasing the residential download speed. A practical solution to the problem is to aggregate the bandwidth of 802.11 access points (APs) backhauls in range. Since 802.11 devices are usually single radio, the communication to APs on different radio channels requires a time-division multiple access (TDMA) policy at the client station. With an in-depth experimental analysis and a customized 802.11 driver, in this paper, we show that the usage of multi-AP TDMA policy may cause degradation of the TCP throughput and an underutilization of the AP backhauls. We then introduce a simple analytical model that accurately predicts the TCP round-trip time (RTT) with a multi-AP TDMA policy and propose a resource allocation algorithm to reduce the observed TCP RTT with a very low computational cost. Our proposed scheme runs locally at the client station and improves the aggregate throughput up to 1.5 times compared to state-of-the-art allocations. We finally show that the throughput achieved by our algorithm is very close to the theoretical upper bound in key simulation scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.