Abstract

Human-Robot Collaboration (HRC) presents an opportunity to improve the efficiency of manufacturing processes. However, the existing task planning approaches for HRC are still limited in many ways, e.g., co-robot encoding must rely on experts’ knowledge and the real-time task scheduling is applicable within small state-action spaces or simplified problem settings. In this paper, the HRC assembly working process is formatted into a novel chessboard setting, in which the selection of chess piece move is used to analogize to the decision making by both humans and robots in the HRC assembly working process. To optimize the completion time, a Markov game model is considered, which takes the task structure and the agent status as the state input and the overall completion time as the reward. Without experts’ knowledge, this game model is capable of seeking for correlated equilibrium policy among agents with convergency in making real-time decisions facing a dynamic environment. To improve the efficiency in finding an optimal policy of the task scheduling, a deep-Q-network (DQN) based multi-agent reinforcement learning (MARL) method is applied and compared with the Nash-Q learning, dynamic programming and the DQN-based single-agent reinforcement learning method. A height-adjustable desk assembly is used as a case study to demonstrate the effectiveness of the proposed algorithm with different number of tasks and agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.