Abstract

In this work, a novel joint processing route that integrates the disposal of phosphogypsum waste with CO2 emissions reduction in a cement plant was proposed. The route mainly includes three parts: direct aqueous carbonation of phosphogypsum, use of the obtained carbonation product for CO2 capture in the calcium looping process (CLP), and manufacture of cement clinker using the spent CaO-based sorbent. The direct use of the CO2 derived from cement plant flue gas (20 vol % CO2) is able to convert 94.5% of CaSO4 in the phosphogypsum into CaCO3. However, a long time of 90 min is required for the completion of the conversion. Therefore, we proposed to introduce a part of the highly concentrated CO2 gas stream separated from the CLP and, hence, to increase the overall CO2 concentration of the carbonation gas stream. It was found that only 45 min is needed to achieve a comparable carbonation level when the gas stream containing 45 (or 60) vol % CO2 was used. Moreover, the solid carbonation residues derived from ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call