Abstract

3D printing of free-form objects presents inherent complexity due to their organic and intricate shapes. Designers engage with such objects, considering a range of factors including aesthetics, engineering viability, and ergonomic comfort. This research is focused on achieving the most effective printing parameters for a free-form object utilizing the Digital Light Processing (DLP) technique within a 3D printer. Within this study, a squeezed hexagonal tube-shaped CAD model was employed as an experimental subject, following the principles of the Response Surface Method (RSM). The research delved into the optimization of printing parameters, particularly layer thickness and exposure time, to enhance the dimensional accuracy and surface quality of the free-form model. Two levels were established for each factor: layer thickness was set at 0.06 mm (low) and 0.08 mm (high), while exposure time was tested at 6 s (low) and 8 s (high). The assessment of surface quality involved a qualitative evaluation employing a digital microscope to identify potential defects and imperfections in the print outcomes. The investigation culminated in the identification of the optimal printing parameters: a layer thickness of 0.0753 mm and an exposure time of 7.2143 seconds. This achievement not only enhances the understanding of 3D printing variables in the context of intricate free-form models but also contributes to the broader field of additive manufacturing parameter optimization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call