Abstract
The triple oxygen isotope composition of sulfate may reveal the formation pathway and depositional sources and may indicate slow biologic cycling in the environment. Pyrolysis mass spectrometry is better suited for large sample workloads during environmental profiling but sufficient precision and a thorough verification of accuracy are required for comparison with higher precision laser fluorination data. Quantitative sulfate extraction from soil samples at neutral pH, purification, conversation into Ag-sulfate, and pyrolysis mass spectrometry were modified for high sample throughput. Samples were analyzed after pyrolysis in quartz cups and gold capsules in a modified EuroVector model 3000 elemental analyzer. Sample O2 was measured in continuous He-flow after purification by cryo-trapping and chromatography on a Thermo Finnigan MAT253 isotope ratio mass spectrometer. A protocol for routine quality control and data normalization ensures long-term accuracy of the pyrolysis method. The 1σ SD external reproducibility is 0.12‰ for Δ17 OSO4 values on 30 μmol samples. Careful normalization for a daily analytical session accounts for changing pyrolysis conditions over the course of multiple sessions. The precision and accuracy obtained with quartz cups are comparable with those obtained with gold capsules. Pyrolysis and fluorination data for in-house standards from four laboratories and from an Atacama Desert gypsum-soil profile are identical and demonstrate the accuracy of our simplified method. Pyrolysis of sulfate in quartz cups and a modified simple elemental analyzer setup allows for accurate, precise, fast, cost-efficient, and non-hazardous mass spectrometric analysis. Exchangeability of data from pyrolysis and laser fluorination methods was demonstrated by repeat analysis of standards and natural samples despite high contents of interfering, easily soluble nitrates and chlorides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.