Abstract

Braiding carriers, which are the important parts of a braiding machine, have the functions such as carrying braiding materials, controlling tension of carbon fiber, and driving carbon fiber movement. During the braiding process, two groups of carbon fibers braided in clockwise and counter clockwise direction contact each other and form relative motion, which causes friction and fuzzing. In order to improve this situation, the structural parameters of the carriers need to be optimized. In this paper, the kinematics and dynamics models were established based on the structure of braiding carriers. The micro-element method was used to analyze the relationship between the fiber length released from the yarn barrel, the rotation angle of the lever, and the tension of the carbon fiber. To limit the fluctuant range of carbon fiber tension, and to alleviate the fluffing phenomenon caused by the two groups of carbon fiber in contact with each other, antlion algorithm was used to optimize the structural parameters of braiding carriers. The simulation results showed that the tension of the carbon fiber can meet the processing requirements by adjusting the starting angle of each stage of carrier, the length of lever, the elastic coefficient of springs, and pre-compression of springs. It can be known that the structural parameters of braiding carriers optimized by antlion algorithm could meet the requirement of carbon fiber tension.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call