Abstract

We formulate and study a fundamental search and detection problem, Schedule Optimization, motivated by a variety of real-world applications, ranging from monitoring content changes on the web, social networks, and user activities to detecting failure on large systems with many individual machines.We consider a large system consists of many nodes, where each node has its own rate of generating new events, or items. A monitoring application can probe a small number of nodes at each step, and our goal is to compute a probing schedule that minimizes the expected number of undiscovered items at the system, or equivalently, minimizes the expected time to discover a new item in the system.We study the Schedule Optimization problem both for deterministic and randomized memoryless algorithms. We provide lower bounds on the cost of an optimal schedule and construct close to optimal schedules with rigorous mathematical guarantees.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.