Abstract

Sparse matrix–vector multiplications (SpMV) are common in scientific and HPC applications but are hard to be optimized. While the ARMv8-based processor IP is emerging as an alternative to the traditional x64 HPC processor design, there is little study on SpMV performance on such new many-cores. To design efficient HPC software and hardware, we need to understand how well SpMV performs. This work develops a quantitative approach to characterize SpMV performance on a recent ARMv8-based many-core architecture, Phytium FT-2000 Plus (FTP). We perform extensive experiments involved over 9500 distinct profiling runs on 956 sparse datasets and five mainstream sparse matrix storage formats, and compare FTP against the Intel Knights Landing many-core. We experimentally show that picking the optimal sparse matrix storage format and parameters is non-trivial as the correct decision requires expert knowledge of the input matrix and the hardware. We address the problem by proposing a machine learning based model that predicts the best storage format and parameters using input matrix features. The model automatically specializes to the many-core architectures we considered. The experimental results show that our approach achieves on average 93% of the best-available performance without incurring runtime profiling overhead.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call