Abstract

Reliability to soft errors is an increasingly important issue as technology continues to shrink. In this paper, we show that applications exhibit different reliability characteristics on big, high-performance cores versus small, power-efficient cores, and that there is significant opportunity to improve system reliability through reliability-aware scheduling on heterogeneous multicore processors. We monitor the reliability characteristics of all running applications, and dynamically schedule applications to the different core types in a heterogeneous multicore to maximize system reliability. Reliability-aware scheduling improves reliability by 25.4 percent on average (and up to 60.2 percent) compared to performance-optimized scheduling on a heterogeneous multicore processor with two big cores and two small cores, while degrading performance by 6.3 percent only. We also introduce a novel system-level reliability metric for multiprogram workloads on (heterogeneous) multicores. We provide a trade-off analysis among reliability-, power- and performance-optimized scheduling, and evaluate reliability-aware scheduling under performance constraints and for unprotected L1 caches. In addition, we also extend our scheduling mechanisms to multithreaded programs. The hardware cost in support of our reliability-aware scheduler is limited to 296 bytes per core.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.