Abstract

Conductive silver paste plays a crucial role as an interconnecting material between electrodes and circuits in electronic circuits and solar cells. The quality of the silver paste is greatly influenced by the preparation of the conductive-phase silver powder and the sintering process. This study investigated the impact of fluid dynamics on the preparation of silver powder. Combined with X-ray diffractometer characterization and molecular dynamics simulation, the formation mechanism of wrinkled silver powder was explained. The wrinkled silver powder replaced the traditional smooth spherical silver powder, and the point contact between the smooth silver powder turned into a line and surface contact. After mixing and sintering with the micrometer flake silver powder, the electrical conductivity and sintering morphology of the silver paste were improved. Compared with the silver content of conventional silver paste (≥75 wt %), the silver paste of (9.23 ± 0.68) × 10-6 Ω cm can be prepared by curing at 250 °C for 45 min when wrinkled powder/flake powder = 1:1 and silver paste content was only 66.7%. This research work provides a new idea for the morphology control of submicrometer silver powder, which has important applications in the field of low-temperature silver paste for new N-type batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.