Abstract

Shelf life is the time a product can be stored without losing its qualitative characteristics. It represents one of the most critical quality traits for food products, particularly for fleshy fruits, including tomatoes. Tomatoes’ shelf life is usually shortened due to fast over-ripening caused by several different factors, among which changes in temperature, respiration and pathogen exposure. Although tomatoes usually do not contain anthocyanins, varieties enriched in these antioxidant compounds have been recently developed. The anthocyanin-rich tomatoes have been shown to possess a significantly extended shelf life by delayed over-ripening and reduction of the susceptibility to certain pathogens. In the present work, we compared different conditions of postharvest storage of anthocyanin-rich tomato fruits with the aim to understand if the added value represented by the presence of the anthocyanins in the fruit peel can be affected in postharvest. For this purpose we used an anthocyanin-enriched tomato line derived from conventional breeding and took into consideration different light and temperature conditions, known to affect fruit physiology during postharvest as well as anthocyanin production. Several quality traits related to the fruit ripening were measured, including anthocyanin and carotenoid content, pH, titratable acidity and total soluble solids. In this way we identified that the most suitable fruit storage and postharvest anthocyanin accumulation were obtained through exposure to cool temperature (12° C), particularly in the presence of light. Under these parameters, tomato fruits showed increased anthocyanin content and unchanged flavour-related features up to three weeks after harvesting.

Highlights

  • Tomato (Solanum lycopersicum L.) is the second most cultivated and one of the most consumed vegetables worldwide [1]

  • Among all the conditions analyzed, in light and cool temperature (12 ̊ C) we observed prolonged accumulation of anthocyanins during the three weeks of storage (Fig 1). This was especially visible in the parts of the fruit beneath the sepals, which appeared green at t0, orange/red after the first week, and purple starting from the second week of storage (Fig 1A)

  • Even if the differences were not statistically significant, weight loss changes in fruits stored at 12 ̊ C appeared on the whole lower than those measured in fruits stored at room temperature (RT) (Fig 2), confirming their higher firmness as visually estimated

Read more

Summary

Introduction

Tomato (Solanum lycopersicum L.) is the second most cultivated and one of the most consumed vegetables worldwide [1]. It represents an important model for fleshy fruit ripening [2]. Shelf life is the time between production and consumption of a product during which it can be stored without losing its satisfactory quality and safeness. It represents one of the most critical quality traits for fleshy fruits, and can be affected by different factors such as exposure to unsuitable temperature and humidity or to pathogens, which can promote over-ripening. Fast over-ripening leads to reduced shelf life and represents a relevant challenge for the tomato industry [3, 4].

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.