Abstract

This study investigates the transformative potential of repurposing non-biodegradable industrial by-products, specifically glass, brick, and sanitary ceramic waste, as alternative fillers for self-compacting mortars (SCM). Positioned within the framework of sustainability and enhanced performance, we conduct an in-depth comparative analysis against traditional limestone fillers to ascertain the efficacy of these unconventional materials. Employing a comprehensive methodology, we conduct spreading tests, evaluate heat of hydration, and assess mechanical resistance. Additionally, we delve into key durability parameters, including water-accessible porosity and capillarity, to comprehensively understand the nuanced effects of diverse fillers on the characteristics of the resulting self-compacting mortars. The experimental timeline unfolds through a series of assessments, measuring compressive and tensile strengths at strategic intervals - 2, 7, 28, 90, 270, and 365 days post-application. After 270 days of maturation, our study rigorously examines durability parameters. The findings unequivocally reveal a significant enhancement in SCM performance when incorporating glass, brick, and sanitary ceramic waste as fillers, outperforming conventional limestone fillers. Of notable significance is the consistent superiority of ceramic fillers across a spectrum of metrics. This research significantly contributes to the understanding of sustainable repurposing of industrial by-products in construction. Moreover, it highlights the pivotal role played by ceramic fillers in elevating rheological, mechanical, and durability attributes of self-compacting mortars. Beyond its immediate implications, this study opens new avenues for environmentally responsible and economically viable construction materials, promising further advancements and innovation in the field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call