Abstract

AbstractSelective withdrawal systems can take advantage of thermal stratification in reservoirs to manage downstream temperatures. Selective withdrawal might also help adapt operations to environmental changes, such as increased stream temperatures expected with climate change. This exploratory study develops a linear programming model to release water from different thermal pools in reservoirs to minimize deviations from target downstream temperatures. The model is applied with representative thermal dynamics to Lake Spaulding, a multipurpose reservoir on the South Fork Yuba River in California with climate warming represented by uniform increases in air temperature. Optimization results for thermal pool management with selective withdrawal are compared to a single, low-level outlet release model. Optimal selective withdrawal hedges the winter release of cold water to decrease summer stream temperatures. With climate warming, selective withdrawal can help lessen stream warming in the summer but at a cost...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.