Abstract

Cloud computing aims to optimal use of its resources by aggregating them to increase throughput and solve difficult computational problems in the most efficient way possible. Task scheduling problem is incompliant with exact solutions in cloud due to its NP-hard nature. To address this, various meta-heuristic strategies have been developed. A task scheduler should locate the optimal resources for the user’s job while taking into account specific cloud task parameter constraints. Here, a hybrid task scheduling strategy is described that incorporates deep learning and nature-inspired meta-heuristic optimization to maximize cloud throughput while minimizing completion time in an IaaS cloud. The scheduler succeeds towards cloudlet allocation resulted to shorter makespan and higher system throughput. The novel scheduling technique was evaluated against certain algorithms using the CloudSim software. When compared to existing algorithms such as Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO), the experimental findings show that the suggested approach outperforms them.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.