Abstract
Rubisco catalyses the carboxylation of ribulose-1,5-bisphosphate (RuBP), enabling net CO2 assimilation in photosynthesis. The properties and regulation of Rubisco are not optimal for biomass production in current and projected future environments. Rubisco is relatively inefficient, and large amounts of the enzyme are needed to support photosynthesis, requiring large investments in nitrogen. The competing oxygenation of RuBP by Rubisco decreases photosynthetic efficiency. Additionally, Rubisco is inhibited by some sugar phosphates and depends upon interaction with Rubisco activase (Rca) to be reactivated. Rca activity is modulated by the chloroplast redox status and ADP/ATP ratios, thereby mediating Rubisco activation and photosynthetic induction in response to irradiance. The extreme thermal sensitivity of Rca compromises net CO2 assimilation at moderately high temperatures. Given its central role in carbon assimilation, the improvement of Rubisco function and regulation is tightly linked with irradiance, nitrogen and water use efficiencies. Although past attempts have had limited success, novel technologies and an expanding knowledge base make the challenge of improving Rubisco activity in crops an achievable goal. Strategies to optimize Rubisco and its regulation are addressed in relation to their potential to improve crop resource use efficiency and climate resilience of photosynthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.