Abstract
The rate at which quantum communication tasks can be performed using direct transmission is fundamentally hindered by the channel loss. Quantum repeaters allow, in principle, to overcome these limitations, but their introduction necessarily adds an additional layer of complexity to the distribution of entanglement. This additional complexity - along with the stochastic nature of processes such as entanglement generation, Bell swaps, and entanglement distillation - makes finding good quantum repeater schemes non-trivial. We develop an algorithm that can efficiently perform a heuristic optimisation over a subset of quantum repeater schemes for general repeater platforms. We find a strong improvement in the generation rate in comparison to an optimisation over a simpler class of repeater schemes based on BDCZ repeater schemes. We use the algorithm to study three different experimental quantum repeater implementations on their ability to distribute entanglement, which we dub \emph{information processing} implementations, \emph{multiplexed} implementations, and combinations of the two. We perform this heuristic optimisation of repeater schemes for each of these implementations for a wide range of parameters and different experimental settings. This allows us to make estimates on what are the most critical parameters to improve for entanglement generation, how many repeaters to use, and which implementations perform best in their ability to generate entanglement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.