Abstract

Reduce graphene oxide (rGO) aerogels with different precursor graphene oxide sheet sizes are synthesized using L-ascorbic acid reduction followed by an ambient pressure drying method. The sheet sizes determine the oxygen functionality content during aerogel formation, which subsequently affect its structural properties. The optimized sheet size renders strong parallel sheet stacking to provide mechanical strength that withstands capillary action during aerogel formation with a high surface area (190.40 m2 g−1) and pore volume (0.261 cm3 g−1). Such surface properties enhance the electrochemical properties of rGO aerogel (182 F g−1 at 0.75 A g−1) and render it to be an excellent electrode material for a supercapacitor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.