Abstract

Optimal power dispatch is essential to improve the power system’s safety, stability, and optimal operation. The present research proposes a multi-objective optimization methodology to solve the real and reactive power dispatch problem by minimizing the active power losses and generation costs based on mixed-integer nonlinear programming (MINLP) using the epsilon constraint method and fuzzy satisficing approach. The proposed methodology was tested on the IEEE 30-bus system, in which each objective function was modeled and simulated independently to verify the results with what is obtained via Digsilent Power Factory and then combined, which no longer allows for the simulation of Digsilent Power Factory. One of the main contributions was demonstrating that the proposed methodology is superior to the one available in Digsilent Power Factory, since this program only allows for the analysis of single-objective problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.