Abstract

Accurate radar remote sensing requires a radar system with high cross-polarization isolation, highly matched dual-polarization patterns, and low sidelobes. A cylindrical polarimetric phased-array radar (CPPAR), which has polarization purity and scan-invariant beam properties, has recently been introduced to the weather and air surveillance communities. To achieve low sidelobes and matched beams, pattern synthesis using an optimization method is presented. Results reported herein support the idea that CPPARs can be designed and implemented for accurate weather measurements. Furthermore, some uncertainty analysis is performed to show the effects of the amplitude and phase errors on the radiation patterns of the PAR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call