Abstract

The quality of molecular dynamics (MD) simulations relies heavily on the accuracy of the underlying force field. In recent years, considerable effort has been put into developing more accurate dihedral angle potentials for MD force fields, but relatively little work has focused on the nonbonded parameters, many of which are two decades old. In this work, we assess the accuracy of protein-protein van der Waals interactions in the AMBER ff9x/ff12 force field. Across a test set of 44 neat organic liquids containing the moieties present in proteins, we find root-mean-square (RMS) errors of 1.26 kcal/mol in enthalpy of vaporization and 0.36 g/cm(3) in liquid densities. We then optimize the van der Waals radii and well depths for all of the relevant atom types using these observables, which lowers the RMS errors in enthalpy of vaporization and liquid density of our validation set to 0.59 kcal/mol (53% reduction) and 0.019 g/cm(3) (46% reduction), respectively. Limitations in our parameter optimization were evident for certain atom types, however, and we discuss the implications of these observations for future force field development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.