Abstract

Microalgae are a promising source of lipids for biofuel production. To improve the economic feasibility and sustainability of this biofuel feedstock, one should create value for co-products after lipid extraction. Thus, protein isolation from the defatted biomass presents an opportunity. To extract algae protein, temperature and pH were evaluated to maximize the extraction from Nannochloropsis biomass. Maximum quantity of protein was solubilized at 60°C and pH11 and recovered at pH3.2. The isolated protein fractions contained 56.9% and 40.5% protein when using isopropanol (IPA) defatted and non-defatted biomass as the starting materials, with protein yields being 16 and 30%, respectively. The IPA-defatting treatment significantly decreased the protein extraction yield. These values are low compared with soybean protein isolates (>90% protein and ~60% yield). The relatively high protein content (>34%) in the pH11 insoluble fraction indicates needs for further extraction optimization. The nitrogen and amino acid content of the initial materials and all the fractions were determined and the calculated nitrogen to protein conversion factor was in the range of 4.06–4.70. The possibility of the presence of conjugated protein, i.e., N-containing glycoproteins, is also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.