Abstract

Polyetheretherketone (PEEK), with good biocompatibility and similar mechanical properties to natural bone, is extensively employed in the manufacture of prostheses. However, the precision and mechanical properties of current implants are major challenges for clinical applications. In this study, the effect of pore size, raster angle and printing temperature were investigated on length, width, thickness, material consumption, compressive strength and Young’s modulus. Taguchi design of experiment method was used to reduce the number of experiments and optimize the printing process parameters. Finally, predictive analysis was exploited to give the optimal set of process parameters. Experimental results indicated that the approach applied in this work provided more accurate predictions and control of the response variables. The maximum compressive strength and compressive modulus of PEEK scaffolds reached 43.4 MPa and 253.3 MPa, respectively. Therefore, the methodology of present work has the potential to meet the demand of design precision and manufacture of customized bone substitutes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call