Abstract

Microorganisms have emerged as promising resources for producing economical and sustainable bioproducts like Polyhydroxyalkanoate (PHA), a biodegradable polymer that can replace synthetic plastics. In this study, we screened a novel isolate, Bacillus paranthracis RSKS-3 strain, to produce PHA from sewage water, identifying it using Whole Genome Sequence. This study represents the first report on optimizing PHA production using B. paranthracis RSKS-3, employing Design Expert 12.0 software. Our findings reveal that four factors (temperature, inoculum size, potassium dihydrogen phosphate, and magnesium sulfate) significantly affect PHA production in the Plackett-Burman design experiment. Through Response Surface Methodology, we optimized PHA production to 0.647 g/L with specific values for potassium dihydrogen phosphate (0.55 %), inoculum size (3 %), magnesium sulfate (0.055 %), and a temperature of 35 °C, in agreement with the predicted value of 0.630 g/L. This optimization resulted in a substantial 13.29-fold increase in PHA production from 0.34 g/L to 4.52 g/L, underscoring the promising role of B. paranthracis RSKS-3 in eco-friendly PHA production and advancing sustainable bioproduct development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.