Abstract

Early-warning models most commonly optimize signaling thresholds on crisis probabilities. The expost threshold optimization is based upon a loss function accounting for preferences between forecast errors, but comes with two crucial drawbacks: unstable thresholds in recursive estimations and an in-sample overfit at the expense of out-of-sample performance. We propose two alternatives for threshold setting: (i) including preferences in the estimation itself and (ii) setting thresholds ex-ante according to preferences only. Given probabilistic model output, it is intuitive that a decision rule is independent of the data or model specification, as thresholds on probabilities represent a willingness to issue a false alarm vis-a-vis missing a crisis. We provide simulated and real-world evidence that this simplification results in stable thresholds and improves out-of-sample performance. Our solution is not restricted to binary-choice models, but directly transferable to the signaling approach and all probabilistic early-warning models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.