Abstract

Pinning control of a complex network aims at forcing the states of all nodes to track an external signal by controlling a small number of nodes in the network. In this paper, an algebraic graph-theoretic condition is introduced to optimize pinning control. When individual node dynamics and coupling strength of the network are given, the effectiveness of pinning scheme can be measured by the smallest eigenvalue of the grounded Laplacian matrix obtained by deleting the rows and columns corresponding to the pinned nodes from the Laplacian matrix of the network. The larger this smallest eigenvalue, the more effective the pinning scheme. Spectral properties of the smallest eigenvalue are analyzed using the network topology information, including the spectrum of the network Laplacian matrix, the minimal degree of uncontrolled nodes, the number of edges between the controlled node set and the uncontrolled node set, etc. The identified properties are shown effective for optimizing the pinning control strategy, as demonstrated by illustrative examples. Finally, for both scale-free and small-world networks, in order to maximize their corresponding smallest eigenvalues, it is better to pin the nodes with large degrees when the percentage of pinned nodes is relatively small, while it is better to pin nodes with small degrees when the percentage is relatively large. This surprising phenomenon can be explained by one of the theorems established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.