Abstract

Automatic voltage regulators (AVR) are designed to manipulate a synchronous generator’s voltage level automatically. Proportional integral derivative (PID) controllers are typically used in AVR systems to regulate voltage. Although advanced PID tuning methods have been proposed, the actual voltage response differs from the theoretical predictions due to modeling errors and system uncertainties. This requires continuous fine tuning of the PID parameters. However, manual adjustment of these parameters can compromise the stability and robustness of the AVR system. This study focuses on the online self-tuning of PID controllers called indirect design approach-2 (IDA-2) in AVR systems while preserving robustness. In particular, we indirectly tune the PID controller by shifting the frequency response. The new PID parameters depend on the frequency-shifting constant and the previously optimized PID parameters. Adjusting the frequency-shifting constant modifies all the PID parameters simultaneously, thereby improving the control performance and robustness. We evaluate the robustness of the proposed online PID tuning method by comparing the gain margins (GMs) and phase margins (PMs) with previously optimized PID parameters during parameter uncertainties. The proposed method is further evaluated in terms of disturbance rejection, measurement noise, and frequency response analysis during parameter uncertainty calculations against existing methods. Simulations show that the proposed method significantly improves the robustness of the controller in the AVR system. In summary, online self-tuning enables automated PID parameter adjustment in an AVR system, while maintaining stability and robustness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.