Abstract

The research in the field of photocatalysis has progressed, with the development of heterojunctions being recognized as an effective method to improve carrier separation efficiency in light-induced processes. In this particular study, CuCo2S4 particles were attached to a new cubic CdS surface to create an S-scheme heterojunction, thus successfully addressing this issue. Specifically, owing to the higher conduction band and Fermi level of CuCo2S4 compared to CdS, they serve as the foundation and driving force for the formation of an S-scheme heterojunction. Through in-situ X-ray photoelectron spectroscopy and electron paramagnetic resonance analysis, the direction of charge transfer in the composite photocatalyst under light exposure was determined, confirming the charge transfer mechanism of the S-scheme heterojunction. By effectively constructing the S-scheme heterojunction, the d-band center of the composite photocatalyst was adjusted, reducing the energy needed for electron filling in the anti-bonding energy band, promoting the transfer of photogenerated carriers, and ultimately enhancing the photocatalytic hydrogen production. performance. After optimization, the hydrogen evolution activity of the composite photocatalyst CdS-C/CuCo2S4-3 reached 5818.9 μmol g−1h−1, which is 2.6 times higher than that of cubic CdS (2272.3 μmol g−1h−1) and 327.4 times higher than that of CuCo2S4 (17.8 μmol g−1h−1), showcasing exceptional photocatalytic activity. Electron paramagnetic resonance and in situ X-ray photoelectron spectroscopy have established a theoretical basis for designing and constructing S-scheme heterojunctions, offering a viable method for adjusting the D-band center to enhance the performance of photocatalytic hydrogen evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.