Abstract

Most traditional pedestrian simulation methods suffer from short-sightedness, as they often choose the best action at the moment without considering the potential congesting situations in the future. To address this issue, we propose a hierarchical model that combines Deep Reinforcement Learning (DRL) and Optimal Reciprocal Velocity Obstacle (ORCA) algorithms to optimize the decision process of pedestrian simulation. For certain complex scenarios prone to local optimality, we include expert trajectory imitation degree in the reward function, aiming to improve pedestrian exploration efficiency by designing simple expert trajectory guidance lines without constructing databases of expert examples and collecting priori datasets. The experimental results show that the proposed method presents great stability and generalizability, evidenced by its capability to adjust the behavioral strategy earlier for the upcoming congestion situations. The overall simulation time for each scenario is reduced by approximately 8-44% compared to traditional methods. After including the expert trajectory guidance, the convergence speed of the model is greatly improved, evidenced by the reduced 56-64% simulation time from the first exploration to the global maximum cumulative reward value. The expert trajectory establishes the macro rules while preserving the space for free exploration, avoiding local dilemmas, and achieving optimized training efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call