Abstract

We present an algorithm for solving nonlinear programming problems involving a partially separable objective function whose derivatives are assumed to be unavailable. At each iteration, we construct a quadratic interpolation model of the objective function around the current iterate and minimize this model to obtain a trial step. The whole process is embedded within a trust-region framework. We further propose to use ideas of Curtis, Powell and Reid to minimize the number of calls to the objective function in the part of the derivative-free algorithm that improves the geometry of the interpolation set. Numerical experiments tend to confirm the promising behaviour of the algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.