Abstract
Appropriate parameters are very crucial to the learning performance and generalization ability of least-squares support vector machines (LS-SVM). In this paper, a novel parameter selection method for LS-SVM is presented based on chaotic ant swarm (CAS) algorithm. The selection problem of LS-SVM parameters is considered as a compound optimization problem. Then objective function of optimization problem is set and a CAS optimization algorithm is employed to search optimal objective function. CAS algorithm is global search method and it need not to consider LS-SVM dimensionality and complexity. The simulation results show that the proposed method is an effective approach for parameter optimization and the good performance for function approximation is obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.