Abstract

Background Computed tomography (CT) helps physicians locate and diagnose pathological conditions. In some conditions, having an airway segmentation method which facilitates reconstruction of the airway from chest CT images can help hugely in the assessment of lung diseases. Many efforts have been made to develop airway segmentation algorithms, but methods are usually not optimized to be reliable across different CT scan parameters.MethodsIn this paper, we present a simple and reliable semi-automatic algorithm which can segment tracheal and bronchial anatomy using the open-source 3D Slicer platform. The method is based on a region growing approach where trachea, right and left bronchi are cropped and segmented independently using three different thresholds. The algorithm and its parameters have been optimized to be efficient across different CT scan acquisition parameters. The performance of the proposed method has been evaluated on EXACT’09 cases and local clinical cases as well as on a breathing pig lung phantom using multiple scans and changing parameters. In particular, to investigate multiple scan parameters reconstruction kernel, radiation dose and slice thickness have been considered. Volume, branch count, branch length and leakage presence have been evaluated. A new method for leakage evaluation has been developed and correlation between segmentation metrics and CT acquisition parameters has been considered.ResultsAll the considered cases have been segmented successfully with good results in terms of leakage presence. Results on clinical data are comparable to other teams’ methods, as obtained by evaluation against the EXACT09 challenge, whereas results obtained from the phantom prove the reliability of the method across multiple CT platforms and acquisition parameters. As expected, slice thickness is the parameter affecting the results the most, whereas reconstruction kernel and radiation dose seem not to particularly affect airway segmentation.ConclusionThe system represents the first open-source airway segmentation platform. The quantitative evaluation approach presented represents the first repeatable system evaluation tool for like-for-like comparison between different airway segmentation platforms. Results suggest that the algorithm can be considered stable across multiple CT platforms and acquisition parameters and can be considered as a starting point for the development of a complete airway segmentation algorithm.

Highlights

  • Computed tomography (CT) helps physicians locate and diagnose pathological conditions

  • We describe a semi-automated algorithm for airway segmentation in CT images based on lung-side-specific region growing approach using the intensity range of pixels

  • Having a different threhsold for the trachea, the right and left lungs helps to have a better segmentation in one lung, that will not be affected by the presence of leakage in the other

Read more

Summary

Introduction

Computed tomography (CT) helps physicians locate and diagnose pathological conditions. First results from the lung cancer screening trial data show that around one third of smoking people that undergo a CT scan have lung nodules that may require guided bronchoscopy and biopsy [3]. For these reasons, automatic segmentation of the tracheal and bronchial anatomy followed by a 3D reconstruction may significantly improve the physician’s ability to assess pathological conditions. Several techniques of airway segmentation starting from CT images have been proposed, but the problem of segmenting the narrow peripheral airways still represents a major technical challenge These narrow outer airways are susceptible to image-reconstruction artifacts, patient movements and partial volume effect which may introduce degradation

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.