Abstract

In this study, we developed a pilot-scale membrane capacitive deionization (MCDI) system for treating mildly brackish water and examined various operational parameters, including module arrangements, adsorption/desorption times, and flow rates. As we aimed to optimize these parameters to increase total dissolved solids (TDS) removal efficiency, the results revealed that the dual-series mode module arrangement and an adsorption time of 120 s with a flow rate of 10 L/min achieved the highest TDS removal efficiency of 99%. Energy consumption analysis showed that lower flow rates were associated with higher TDS removal efficiencies, highlighting the balance between energy consumption and water quality. This study provides insights into optimizing a pilot-scale MCDI for efficient water supply solutions, offering promise for sustainable and eco-friendly water treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call