Abstract
In this research, the turning parameters of steel are optimized via multi-objective genetic algorithm and multi-objective harmony research algorithm. These two algorithms are known as strong and powerful tools in optimization of engineering problems. The stock removal rate and surface roughness, as two main of output parameters are the target function and have been considered to be optimized. Since, there are two functions here; we can not use the ordinary optimization method with single-objective algorithm. In steel machining, the stock removal rate usually decreases with the surface finishing and visa versa. Therefore, it is necessary to define the weight of these parameters. In this paper the importance of each of these parameters are determined with weight sum method. In this research, the optimization methods to solve the problems via these two algorithms are discussed first. Then, the steel samples are machined and the output data are analyzed and optimized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.