Abstract

Full-view coverage realized by camera sensor networks (CSNs) is highly demanded for monitoring and recognizing objects appearing at target points. However, it aggravates the energy shortage in CSNs as caused by the need to generate and process much sensed data. Undoubtedly, enabling CSN nodes to be rechargeable and harvest energy from their surroundings is an effective method to overcome the energy limitation of a CSN and ensuring its perpetual operation. Moreover, using rechargeable nodes can avoid the replacement of batteries, and thus can reduce network maintenance cost. In this article, we investigate how to design and deploy a rechargeable CSN with the fewest nodes to achieve full-view coverage of all target points while guaranteeing its connectivity and perpetual operation. We first formulate the problem as an integer linear program and prove its NP-hardness, and then propose a greedy heuristic and a differential evolution algorithm to solve it. Extensive simulation results reveal that the latter is able to achieve a larger success rate and higher solution quality but spends more time than the former.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.