Abstract

We consider the problem of attaining either the maximal increase or reduction of the robustness of a complex network by means of a bounded modification of a subset of the edge weights. We propose two novel strategies combining Krylov subspace approximations with a greedy scheme and an interior point method employing either the Hessian or its approximation computed via the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS). The paper discusses the computational and modeling aspects of our methodology and illustrates the various optimization problems on networks that can be addressed within the proposed framework. Finally, in the numerical experiments we compare the performances of our algorithms with state-of-the-art techniques on synthetic and real-world networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call