Abstract

In this paper, a new methodology is developed for optimal multiple-pollutant waste load allocation (MPWLA) in rivers considering the main existing uncertainties. An interval optimization method is used to solve the MPWLA problem. Different possible scenarios for treatment of pollution loads are defined and corresponding treatment costs are taken into account in an interval parameter optimization model. A QUAL2Kw-based water quality simulation model is developed and calibrated to estimate the concentration of the water quality variables along the river. Two non-cooperative and cooperative multiple-pollutant scenario-based models are proposed for determining waste load allocation policies in rivers. Finally, a new fuzzy interval solution concept for cooperative games, namely, Fuzzy Boundary Interval Variable Least Core (FIVLC), is developed for reallocating the total fuzzy benefit obtained from discharge permit trading among waste load dischargers. The results of applying the proposed methodology to the Zarjub River in Iran illustrate its effectiveness and applicability in multiple-pollutant waste load allocation in rivers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.