Abstract

The field of scene recognition, which lies at the crossroads of computer vision and artificial intelligence, has experienced notable progress because of scholarly pursuits. This article introduces a novel methodology for scene recognition by combining convolutional neural networks (CNNs) with feature selection techniques based on mutual information (MI). The main goal of our study is to address the limitations inherent in conventional unimodal methods, with the aim of improving the precision and dependability of scene classification. The focus of our research is around the formulation of a comprehensive approach for scene detection, utilizing multimodal deep learning methodologies implemented on a solitary input image. Our work distinguishes itself by the innovative amalgamation of CNN- and MI-based feature selection. This integration provides distinct advantages and enhanced capabilities when compared to prevailing methodologies. In order to assess the effectiveness of our methodology, we performed tests on two openly accessible datasets, namely, the scene categorization dataset and the AID dataset. The results of these studies exhibited notable levels of precision, with accuracies of 100% and 98.83% achieved for the corresponding datasets. These findings surpass the performance of other established techniques. The primary objective of our end-to-end approach is to reduce complexity and resource requirements, hence creating a robust framework for the task of scene categorization. This work significantly advances the practical application of computer vision in various real-world scenarios, leading to a large improvement in the accuracy of scene recognition and interpretation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call