Abstract

The output of photovoltaic (PV) systems is significantly impacted by the vagaries of ambient temperature, solar irradiance, and environmental fluctuations. To achieve the utmost attainable power from PV systems, it is desired to be efficient at the maximum power point in diverse weather climates. Maximum power point tracking (MPPT) is used to schedule a designated location from where the highest power can be harvested. In the context of solar photovoltaic systems connected with DC microgrid platforms, this study introduces a recently developed drone squadron optimization (DSO) scheme that tracks the global maximum power point under PSCS difficulties. Furthermore, an exhaustive comparative analysis has been presented among particle swarm optimization (PSO), cuckoo search algorithm (CUSA), and grey wolf optimization (GWO) under different operating environments to endorse the supremacy of the nominated technique. The suggested method performs noticeably faster than many other methods currently in use, and in addition to offering the highest power, it can also use bidirectional power flow regulation in both constant and variable air conditions. Lastly, an MPPT system interfaced with the DC microgrid based on DSO ensures a sustainable and reliable architecture to provide at load in low power generating situations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.