Abstract
The cutting speed at the lowest point of a ball-end milling cutter is zero, which results in poor workpiece surface quality and serious cutter wear. To alleviate this problem, a micro-texture can be processed on the rake face of a ball-end milling cutter to provide an anti-friction and anti-wear mechanism. The objective of the work reported here is to reduce cutter wear and optimise workpiece surface quality. By using a mathematical model of row spacing to analyse the differential geometric relationship between cutters and surfaces at their contact point, we have been able to obtain optimal cutter orientation. This was verified by simulating concave surface machining. Experiments were then conducted to verify the approach and the results showed that when the cutter orientation is adjusted to its optimum, the surface quality of the workpiece processed by a micro-textured ball-end milling cutter is at its best. [Submitted 10 May 2018; Accepted 28 July 2019]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.