Abstract

We consider the problem of peeling an adhesive thin film from a substrate that has a non-uniform distribution of adhesive. When the length scale of the non-uniformity is small compared to the overall dimensions of the film being peeled, it is possible to describe the overall peeling behavior with an effective adhesive strength. In this paper, we seek to find the distributions of adhesive strength at the microscale that optimize various aspects of the effective adhesive strength at the macroscale. We do so using both analytic bounds and topology optimization. We formulate the problem of peeling as a free boundary problem, and the effective strength as a maximum principle over the trajectory. For topology optimization, we replace the maximum with an integral norm, and use an adjoint method for the sensitivity. The problem of peeling may be viewed as a model problem in fracture mechanics where the crack (peel) front is confined to a plane, and thus our analysis as a first step toward studying the more general problem of optimizing microstructure for toughness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.