Abstract
The thermal debinding-sintering process plays an essential role in the context of material extrusion-based additive manufacturing (AM) for producing parts using metal injection molding (MIM). During thermal debinding, metal parts often experience material distortion and porosity, which negatively impacts their mechanical properties. Slowing down the debinding speed is a common approach to mitigate material distortion and porosity. However, this leads to a significant increase in the debinding time. In this study, we carried out debinding-sintering experiments to optimize the distortion and porosity in metal parts. These metal parts were manufactured utilizing bronze/polylactide (PLA) blend filaments and placed in crucibles of different sizes (small, medium, and large), with different heating rates and holding times. The results revealed that the small crucible yielded higher porosity levels in the metal parts, which could be reduced from 23% to 12% by extending both the heating and holding times. In contrast, the medium crucible managed to reduce porosity to approximately 15% without requiring an extension of the processing time. The large crucible, on the other hand, couldn't achieve further porosity reduction due to challenges in reaching the desired temperature. To gain a deeper insight into temperature distribution during the debinding process, we performed numerical simulations using the computational fluid dynamics (CFD) technique and obtained temperature profiles within the kiln using the three crucibles. Ultimately, we carried out standard mechanical tests on the resulting metal parts and evaluated the thermal debinding procedure under various conditions. The approach we employed, combining experiments and numerical simulations, demonstrated significant promise for enhancing the quality of metal parts in the thermal debinding-sintering process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.