Abstract
ABSTRACTBiodegradable thermoplastic elastomer (BTPE) blends of epoxidized natural rubber (ENR) and poly(butylene succinate) (PBS) were prepared by the melt mixing process. Influences of the processing parameters mixing temperature, rotor speed, and mixing time on mechanical and morphological properties of BTPE were investigated. Taguchi method was applied to improve the mechanical and morphological properties by optimizing the processing parameters. That is, the experimental design adopted the L9 Taguchi orthogonal array with three manipulated factors (i.e., mixing temperature, rotor speed, and mixing time). Analysis of mean and analysis of variance were also exploited and the mixing temperature was found to be the most significant processing parameter regarding mechanical properties. The mixing temperature showed large contributions to Young's modulus, 100% modulus, tensile strength, and elongation at break, namely 45.33, 40.38, 49.31, and 36.04%, respectively. Furthermore, the optimum conditions found for mixing temperature, rotor speed, and mixing time were 140 °C, 100 rpm and 10 min, respectively. The result was confirmed by atomic force microscopy and scanning electron microscopy micrographs showing fine‐grained co‐continuous phase morphology of the ENR/PBS blends. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46541.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.