Abstract

This article explores the important role of traditional shipyards in the global maritime industry, covering aspects of construction, repair, and maintenance. With the advent of faster manufacturing techniques, traditional shipyards face important challenges, such as planning errors, coordination problems, delivery delays, and underutilization of technology, which results in high costs, reduced productivity, and prolonged projects. The application of Manufacturing Cycle Efficiency (MCE) emerged as an important solution to significantly increase production efficiency. MCE empowers shipyards to deal effectively with waste, bottlenecks, and disruptions, thereby increasing performance, competitiveness, and profitability. Using a comprehensive approach that uses both qualitative and quantitative methods, including field surveys, and in-depth interviews in the traditional shipyard industry, this research identifies Nonvalue-Added (NVA) processes, conducts process mapping, and calculates MCE. The findings reported in this article underscore the significant wastage in the production process, indicating an urgent need for improvement, given the current average MCE value of 67.08%, indicating considerable room for improvement. This article provides innovative perspectives on optimizing the traditional shipyard industry through production cycle efficiencies while offering actionable recommendations. Key focus areas include integrating management systems, adopting advanced technologies, and implementing sustainable strategies to improve MCE, especially by reducing nonvalue-added time wastage, such as inspection and storage. By implementing strategies that optimize production, minimize waste, and overcome the challenges of global competition, this research contributes to improving MCE. In conclusion, this study is an invaluable guide for industry stakeholders, enabling them to enhance their competitiveness and adapt effectively to a dynamic business environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.