Abstract
In high pressure turning, the optimization of cutting forces is crucial to improve the efficiency and precision of machining. In this study, the Taguchi method is used to systematically investigate and optimize the input parameters that influence the cutting forces. By using an orthogonal array and analyzing the signal-to-noise ratio, the main factors affecting the cutting force are identified and their optimal values are determined. The effectiveness of the optimization is confirmed by validation tests, which show a significant improvement in cutting performance. The results provide actionable insights for machining and lead to better decision-making and process control in high-pressure turning. This research not only highlights the benefits of the Taguchi method in process optimization, but also contributes to advancing machining techniques by minimizing cutting forces and improving overall process stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.