Abstract
Recoverable magnetic biochar has great potential for treating wastewater contaminants such as Pb(II). However, whether magnetic modification could enhance metal adsorption efficiency is currently contradictory in the literature mainly due to the differences in selecting various magnetic functionalization conditions. Considering this gap in knowledge, the effects of magnetic functionalization method (impregnation and precipitation), concentration of precursor iron solution (0.01–1 M), and pyrolysis temperature (300–700 °C) on the characteristics and Pb(II) adsorption capacity of biochar were systematically investigated in this paper. Results indicated that Fe3O4 was the main product for magnetic biochars synthesized using the impregnation (denoted as FWFe(3)) and precipitation methods (denoted as FWFe(2)). Magnetic functionalization resulted in remarkably increased pH and more negative zeta potential for FWFe(2) samples, whereas FWFe(3) samples showed the opposite trends. The adsorption of Pb(II) on different biochars fitted the pseudo-second order model and the Langmuir model. The maximum adsorption capacity was 817.64 mg/g for FWFe(2)1M700C (precipitation by 1 M of Fe(II)/Fe(III), pyrolysis at 700 °C), outperforming FWFe(3) and pristine biochar samples by around 5–13 times. Mechanism study indicated that the adsorption mainly involved electrostatic attraction, ion exchange, co-precipitation, and complexation. Pb(II) adsorption capacity was strongly dependent on the alkali pH of biochar. However, this efficiency was less affected by biochar surface area and its morphology. The higher pH of FWFe(2) samples not only led to an increased surface charge for stronger electrostatic attraction and ion exchange but also favored the formation of co-precipitates. By contrast, FWFe(3) samples showed a decreased adsorption capacity for Pb(II) with increased concentration of embedded iron. Overall, magnetic biochar, prepared using precipitation followed by high-temperature pyrolysis (such as, FWFe(2)1M700C), can be a promising adsorbent for Pb(II) adsorption from wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.