Abstract
Wolfiporia cocos, a versatile fungus acclaimed for its nutritional and therapeutic benefits in Traditional Chinese Medicine, holds immense potential for pharmaceutical and industrial applications. In this study, we aimed to optimize liquid fermentation techniques and culture medium composition to maximize mycelial biomass (MB) yield, pachymic acid (PA) concentration, and overall PA production. Additionally, we investigated the molecular basis of our findings by quantifying the expression levels of genes associated with PA and MB biosynthesis using quantitative real-time polymerase chain reaction. Under the optimized fermentation conditions, significant results were achieved, with maximum MB reaching 6.68 g l-1, PA content peaking at 1.25 mg g-1, and a total PA yield of 4.76 g l-1. Notably, among the four examined genes, squalene monooxygenase, exhibited enhanced expression at 0.06 ratio under the optimized conditions. Furthermore, within the realm of carbohydrate-active enzymes, the glycoside hydrolases 16 family displayed elevated expression levels at 21 ratios, particularly during MB production. This study enhances understanding of genetic mechanism governing MB and PA production in W. cocos, highlighting the roles of squalene monooxygenase and glycoside hydrolases 16 carbohydrate-active enzymes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.