Abstract

We introduce a white-graph expansion for the method of perturbative continuous unitary transformations when implemented as a linked-cluster expansion. The essential idea behind an expansion in white graphs is to perform an optimized bookkeeping during the calculation by exploiting the model-independent effective Hamiltonian in second quantization and the associated inherent cluster additivity. This approach is shown to be especially well suited for microscopic models with many coupling constants, since the total number of relevant graphs is drastically reduced. The white-graph expansion is exemplified for a two-dimensional quantum spin model of coupled two-leg XXZ ladders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call