Abstract

Using lignocellulosic nanofibrils as adhesive binders in structural composites is a growing field of interest attributable to their renewability, recyclability, and strength. A fundamental understanding of their adhesion mechanisms is crucial to tailor performance and optimize production costs. These mechanisms were elucidated by studying the morphology dependent adhesion in a model system composed of cellulose nanofibrils (CNFs) at different degrees of refinement and porous paper substrates. CNFs and lignin containing cellulose nanofibrils (LCNF) were characterized at different length scales using optical, atomic force, and scanning electron microscopy, revealing a complex distribution of sizes, spanning the macroscale to the nanoscale, which are modified unequally by refinement. Strong adhesion was correlated to a decrease in fiber size on the largest length scale and with an increase in relative fibril surface area. Flocculation hampered effective LCNF adhesion, but adding suspension stabilizers improved adhesion to levels comparable to CNF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.