Abstract

Gel polymer electrolytes (GPEs) have potential as substitutes for liquid electrolytes in lithium-metal batteries (LMBs). Their semi-solid state also makes GPEs suitable for various applications, including wearables and flexible electronics. Here, we report the initiation of ring-opening polymerization of 1,3-dioxolane (DOL) by Lewis acid and the introduction of diluent 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether (TTE) to regulate electrolyte structure for a more stable interface. This diluent-blended GPE exhibits enhanced electrochemical stability and ion transport properties compared to a blank version without it. FTIR and NMR proved the effectiveness of monomer polymerization and further determined the molecular weight distribution of polymerization by gel permeation chromatography (GPC). Experimental and simulation results show that the addition of TTE enhances ion association and tends to distribute on the anode surface to construct a robust and low-impedance SEI. Thus, the polymer battery achieves 5 C charge-discharge at room temperature and 200 cycles at low temperature -20 °C. The study presents an effective approach for regulating solvation structures in GPEs, promoting advancements in the future design of GPE-based LMBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.