Abstract
Metallic sodium has attracted increasing attention as an ideal anode material for next-generation high energy density and low-cost secondary batteries. However, it is highly desired yet remains challenging to improve their cycling stability and safety due to unstable solid electrolyte interphase and dendrite growth. Herein, a hybrid interface layer composed of Na2Se and Na3P is constructed on the surface of Na (Na@NPS) via in situ spontaneous reaction. The hybrid interface layer with merits of high sodiophilicity and high Na-ion conductivity can effectively induce homogeneous Na-ion flux distribution, accelerate the reaction kinetics and suppress decomposition of electrolyte components. Benefitting from the above advantages, the Na@NPS symmetric cell delivers a long cycle life (1000 h at 1 mA cm–2 and 1 mAh cm–2). Furthermore, the full cell coupling with Na3V2(PO4)3-based cathode provides an exceptionally long lifespan (1500 cycles) at 20 C with a capacity retention of 98.2% and high energy density (226 Wh kg–1). Therefore, the enhanced electrochemical performance illustrates the feasibility of the covalent molecule derived hybrid multifunctional interfaces in solving the irregular deposition of Na-ion and expediting reaction kinetics in Na metal batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.